Maggio 8, 2024

TeleAlessandria

Informazioni sull'Italia. Seleziona gli argomenti di cui vuoi saperne di più

Il telescopio spaziale James Webb monitora la cintura di Kuiper: Sedna, Gongong e Kuar

Il telescopio spaziale James Webb monitora la cintura di Kuiper: Sedna, Gongong e Kuar

La Cintura di Kuiper, la vasta regione ai margini del nostro sistema solare abitata da innumerevoli corpi ghiacciati, è un tesoro di scoperte scientifiche. La scoperta e la caratterizzazione degli oggetti della cintura di Kuiper (KBO), a volte indicati come oggetti transnettuniani (TNO), ha portato a una nuova comprensione della storia del Sistema Solare. La perdita degli oggetti della cintura di Kuiper è un indicatore delle correnti gravitazionali che hanno modellato il sistema solare e rivela una storia dinamica delle migrazioni planetarie. Dalla fine del XX secolo, gli scienziati hanno voluto dare un’occhiata più da vicino agli oggetti della fascia di Kuiper per saperne di più sulle loro orbite e sulla loro composizione.

Lo studio degli oggetti nel sistema solare esterno è uno dei tanti obiettivi del sistema solare Telescopio spaziale James Webb (JWST). Utilizzando i dati ottenuti da Webb Spettrometro nel vicino infrarosso (NIRSpec), un team internazionale di astronomi ha osservato tre pianeti nani nella cintura di Kuiper: Sedna, Jungjung e Kwar. Queste osservazioni hanno rivelato molte cose interessanti sulle loro orbite e sulla loro composizione, inclusi idrocarburi leggeri e molecole organiche complesse che si ritiene siano i prodotti dell’irradiazione del metano.

Ha supervisionato la ricerca Joshua Emery, professore associato di astronomia e scienze planetarie alla Northern Arizona University. A lui si sono uniti i ricercatori del Goddard Space Flight Center (GSFC) della NASA. Istituto di Astrofisica Spaziale (Università Parigi-Saclay). Istituto PinheadIL Istituto spaziale della Florida (Università della Florida Centrale). Osservatorio LowellIL Istituto di ricerca del sud-ovest (Swei), e Istituto di scienze del telescopio spaziale (STScI), Università americana. e la Cornell University. Una prestampa del loro articolo è apparsa online ed è in fase di revisione per la pubblicazione da parte di Icaro.

Dall’ultimo sorvolo dell’oggetto Arrokoth nella fascia di Kuiper, la missione New Horizons ha esplorato oggetti nella fascia di Kuiper e effettuato osservazioni eliosferiche e astrofisiche. Credito immagine: NASA/JHUAPL/SwRI//Roman Tkachenko

Nonostante tutti i progressi nel campo dell’astronomia e degli esploratori robotici, ciò che sappiamo del Trans-Nettuno e della Cintura di Kuiper è ancora limitato. Fino ad ora, l’unica missione per studiare Urano, Nettuno e i loro principali satelliti è stata una missione Viaggiatore 2 La missione sorvolò questi due giganti del ghiaccio rispettivamente nel 1986 e nel 1989. Inoltre, il nuovi orizzonti Questa missione è stata la prima navicella spaziale a studiare Plutone e le sue lune (nel luglio 2015) e l’unica a incontrare un oggetto della cintura di Kuiper, avvenuto il 1 gennaio 2019, quando volò vicino alla cintura di Kuiper conosciuta come Arrokoth.

READ  Deimos, la luna più piccola di Marte, potrebbe non essere quello che sembra

Questo è uno dei tanti motivi per cui gli astronomi attendono con impazienza il lancio del James Webb Space Telescope. Oltre a studiare gli esopianeti e le galassie più antiche dell’universo, potenti capacità di imaging a infrarossi sono state rivolte anche al nostro cortile, rivelando nuove immagini di Marte, Giove e dei loro satelliti più grandi. Per il loro studio, Emery e i suoi colleghi si sono basati sui dati nel vicino infrarosso ottenuti da Webb per tre pianeti nella fascia di Kuiper: Sedna, Gungong e Kuar. Questi oggetti hanno un diametro di circa 1.000 km (620 mi), il che li colloca all’interno Classificazione dei pianeti nani dell’Unione Astronomica Internazionale.

Come ha detto Emery a Universe Today via e-mail, questi oggetti sono particolarmente interessanti per gli astronomi a causa delle loro dimensioni, orbite e composizione. Altri oggetti transnettuniani – come Plutone, Eris, Haumea e Makemake – hanno mantenuto ghiacci volatili sulle loro superfici (azoto, metano, ecc.). L’unica eccezione è Haumea, che ha perso le sue sostanze volatili con effetti (apparentemente) significativi. Come ha detto Emery, volevano sapere se anche Sedna, Goonggong e Quaoar avevano sostanze volatili simili sulle loro superfici:

“Lavori precedenti hanno dimostrato che potrebbero essere in grado di farlo. Anche se hanno dimensioni più o meno simili, le loro orbite sono diverse. Sedna è un oggetto proveniente dalla nube interna di Oort con un perielio di 76 UA e un apogeo di circa 1.000 UA. Gunggung si trova in una Orbita ellittica Inoltre, con un perielio di 33 UA e un apogeo di circa 100 UA, Cowar si trova in un’orbita relativamente circolare vicino a 43 UA. Queste orbite collocano gli oggetti in diversi regimi di temperatura e diversi ambienti di radiazione (Sedna, ad esempio, trascorre la maggior parte della sua tempo al di fuori dell’eliosfera del Sole. Volevamo studiare come queste diverse orbite influenzano le superfici. Ci sono anche altri ghiacci interessanti e materiali organici complessi sulle superfici.

Immagini da una delle due osservazioni PRISM di Sedna, Goonggong e Quoar. Credito: Emery, J.P. et al. (2023)

Utilizzando i dati dello strumento Webb NIRSpec, il team ha osservato tutti e tre gli oggetti in modalità prisma a bassa risoluzione a lunghezze d’onda comprese tra 0,7 e 5,2 micrometri (μm), posizionandoli tutti nello spettro del vicino infrarosso. Ulteriori osservazioni Quaoar sono state effettuate da 0,97 a 3,16 μm utilizzando griglie a media risoluzione con dieci volte la risoluzione spettrale. Gli spettri risultanti hanno rivelato alcune cose interessanti su questi oggetti TNO e sulla loro composizione superficiale, ha detto Emery:

“Abbiamo trovato un’abbondanza di etano (C2H6) sui tre corpi, in particolare su Sedna. Sedna mostra anche acetilene (C2H2) ed etilene (C2H4). L’abbondanza è correlata all’orbita (la maggior parte su Sedna, meno su Gunggung e almeno su Kuwar), che è coerente con Temperature relative e ambienti irradiati. Queste molecole sono prodotti dell’irradiazione diretta del metano (CH4). Se l’etano (o altro) fosse stato presente sulle superfici per lungo tempo, si sarebbe trasformato in molecole più complesse mediante irradiazione e dal momento che le vediamo ancora, dubitiamo che i rooftop debbano essere riforniti di metano (CH4) con una certa regolarità.

Questi risultati sono coerenti con quelli presentati in un paio di studi recenti da lui condotti Il dottor Will Grundyastronomo presso l’Osservatorio Lowell e ricercatore associato presso la NASA nuovi orizzonti compito e Chris Glenn, planetologo e geochimico presso SwRI. In entrambi gli studi, Grundy, Glenn e i loro colleghi hanno misurato i rapporti deuterio/idrogeno (D/H) nel metano su Iris e Makemake e hanno concluso che il metano non era primitivo. Invece, sostengono, i rapporti risultano dal fatto che il metano viene lavorato all’interno e rilasciato in superficie.

READ  Il nostro sole potrebbe non essere così grande come pensavamo: allarme scientifico

“Suggeriamo che lo stesso potrebbe essere vero per Sedna, Gonggong e Quaoar”, ha detto Emery. “Vediamo anche che gli spettri di Sedna, Goonggong e Quaoar differiscono da quelli dei KBO più piccoli. Ci sono stati discorsi in due recenti conferenze che hanno mostrato che i dati del telescopio spaziale James Webb per i KBO più piccoli si raggruppano in tre gruppi, nessuno dei quali assomigliano a Sedna, Gonggong e Quaoar e concordano che questo è un risultato anche se i nostri tre corpi più grandi hanno storie geotermiche diverse.

Confronto degli otto TNO più grandi con la Terra (tutti in scala). Credito: NASA/Lessico

Questi risultati potrebbero avere importanti implicazioni per lo studio degli oggetti della Cintura di Kuiper, dei TNO e di altri oggetti nel sistema solare esterno. Ciò include nuove conoscenze sulla formazione di oggetti oltre la linea del gelo nei sistemi planetari, che si riferisce alla linea oltre la quale i composti volatili congelano. Nel nostro sistema solare, la regione transnettuniana corrisponde alla linea dell’azoto, dove gli oggetti trattengono grandi quantità di materiali volatili con punti di congelamento molto bassi (come azoto, metano e ammoniaca). Emery ha affermato che questi risultati illustrano anche il tipo di processi evolutivi che si verificano nei corpi di questa regione:

“L’impatto principale potrebbe essere quello di trovare il volume al quale gli oggetti della Cintura di Kuiper sono diventati abbastanza caldi per il ritrattamento interno del ghiaccio primordiale, e forse anche per la differenziazione. Dovremmo anche essere in grado di utilizzare questi spettri per comprendere meglio il trattamento delle radiazioni del ghiaccio superficiale nella sistema solare esterno.” Gli studi futuri potranno anche esaminare più in dettaglio la stabilità volatile e la possibilità di atmosfere in questi oggetti al di sopra di qualsiasi parte delle loro orbite.

I risultati di questo studio dimostrano anche le capacità del telescopio spaziale James Webb, che ha dimostrato più volte il suo valore da quando è diventato operativo all’inizio dello scorso anno. Ci ricorda anche che oltre a consentire nuove intuizioni e nuove scoperte su pianeti lontani, galassie e struttura su larga scala dell’universo, Webb può anche rivelare cose sul nostro piccolo angolo di universo.

READ  SpaceX e la NASA hanno rinviato la decodifica di speciali astronauti Ax-1 sulla Stazione Spaziale Internazionale

“I dati del telescopio spaziale James Webb sono sorprendenti”, ha aggiunto Emery. “Ci ha permesso di ottenere spettri a lunghezze d’onda più lunghe di quelle che potremmo ottenere dalla Terra, il che ci ha permesso di rilevare questi ghiacci. Spesso, quando si osserva in un nuovo intervallo di lunghezze d’onda, i dati grezzi possono essere di pessima qualità. Il telescopio James Webb non era aperto Non solo la sonda spaziale ha fornito una nuova gamma di lunghezze d’onda, ma ha anche fornito dati sensibili e di straordinaria qualità per una gamma di materiali superficiali nel sistema solare esterno.

Lettura approfondita: arXiv